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SUMMARY

Microglial research has advanced considerably in recent decades yet has been constrained by a rolling series
of dichotomies such as ‘‘resting versus activated’’ and ‘‘M1 versus M2.’’ This dualistic classification of good
or bad microglia is inconsistent with the wide repertoire of microglial states and functions in development,
plasticity, aging, and diseases that were elucidated in recent years. New designations continuously arising
in an attempt to describe the different microglial states, notably defined using transcriptomics and prote-
omics, may easily lead to a misleading, although unintentional, coupling of categories and functions. To
address these issues, we assembled a group of multidisciplinary experts to discuss our current understand-
ing of microglial states as a dynamic concept and the importance of addressing microglial function. Here, we
provide a conceptual framework and recommendations on the use of microglial nomenclature for re-
searchers, reviewers, and editors, which will serve as the foundations for a future white paper.
NAMES, NAMES, NAMES
If the names are unknown, knowledge of the things also

perishes.1—Carolus Linnaeus

And yet, we humans instinctively tend to name things and use

that name to define their properties. Biologists are no exception:

from the time of 18th century father of taxonomy Carolus Lin-
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naeus, the main purpose of biology has been categorizing the

natural world as a way of understanding it. Naming species

and grouping them together into taxa served to define evolu-

tionary relationships; even today taxonomy and phylogeny are

closely interrelated. But we must never forget that nomencla-

tures and categories are artificial constructs and that biology is

seldom black and white but rather an extended continuum of

greys. While giving names is natural and useful, we need to be
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aware that categorization constrains our thinking by forcing us to

fit our observations into established classes. As sociologists say,

‘‘categorization spawns expectations.’’2 This semantic issue has

already been acknowledged by immunologists because, in fact,

the given names have connotations that often imply a specific

function.3 In this paper, we extend similar initiatives on macro-

phages,4 dendritic cells,3 interneurons,5 and astrocytes6 to

discuss the widespread problems associated with categoriza-

tion of microglia using outdated terms such as ‘‘resting versus

activated’’ (Box 1) or ‘‘M1 versus M2’’ (Box 2).

Dichotomic, rigid categories convey a dualistic idea of good

versus bad microglia and may actually impede scientific

advancement. Widely used terms, such as ‘‘neuroinflamma-

tion’’ as a synonym of microglial reactivity (Box 3) and naming

a panoply of presumed microglial populations and assumed

functions arising from single-cell transcriptomics, are

misleading and increasingly problematic, especially to those

entering the field of glial biology and neuroimmunology. This

nomenclature does not address the important question: what

are the specific functions of microglia in the contexts of devel-

opment, health, aging, and disease? It is now clear that micro-

glia exist in diverse, dynamic, and multidimensional states de-

pending on the context, including local environment (Figure 1).

We define dimensions as the key variables driving the pheno-

typic transformations of microglia. These variables are molecu-
larly distinct signaling pathways regulated at multiple levels

(e.g., transcriptional, epigenetic, translational, metabolic) that

each give rise to distinct microglial functions or properties. In

this manner, categorizing microglia based on a historical,

one-dimensional nomenclature in the absence of functional

data will constrain and stifle future progress and innovation.

To examine and address these issues, we assembled a team

of international experts who have made major contributions to

microglia research, inclusive of various groups, and balancing

gender, geographical distribution, and seniority. Authors from

the fields of neuroscience, neurobiology, immunology, neuroim-

munology, oncology, and neuropathology, from both academia

and industry, discussed their perspectives on the current and

future challenges in defining microglial states and nomenclature.

A questionnaire (Data S1) was created to collect all the authors’

opinions on several nomenclature issues and the importance of

directly addressing microglial function. The responses to the

questionnaire, an online meeting held in June 2021, and an

open session held at the EMBO meeting Microglia 2021 were

used as a backbone to develop this paper.

Herein, we summarize our current knowledge about the

identity of microglia and discuss best practices for how to

define and study microglial state dynamics. We then outline

‘‘classical’’ microglial nomenclatures, highlighting some of

the key discoveries that led to the above classifications and
Neuron 110, November 2, 2022 3461
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Box 1. Resting versus activated microglia

The development of specific silver staining techniques in 1919 allowed Rı́o-Hortega to clearly identify microglia and study their

response to experimental manipulations.7,145 Early on, Rı́o-Hortega appreciated the striking morphological transformation of mi-

croglia following brain damage, but it was in the mid-1970s that the terms ‘‘resting’’ and ‘‘activated’’ microglia first appeared in the

literature. These terms were used to morphologically describe cells with an affinity for silver staining that were observed in phys-

iological (‘‘resting’’) versus pathological (‘‘activated’’) conditions. This nomenclature consolidated in the 1980s and became widely

used during the 1990s,146 in parallel with the development and use of histochemical and immunohistochemical techniques, such

as lectin staining,147 detection of phosphatases and phosphorylases,148 and antibodies against the complement receptor CR3.7

These techniques and nomenclature were pivotal in determining that ‘‘resting’’ microglia were unrelated to astrocytes, as some

studies had wrongly concluded,149 and that ‘‘reactive’’ microglia shared many characteristics with the blood-borne monocytes.10

As shown by a PubMed search with microglia in all fields, there were only few papers published on the topic before the 1990s, and

then a steady increase until the beginning of our century, followed by an exponential growth.150 There is a first inflexion point in

2005, with the seminal discovery using non-invasive two-photon in vivo imaging that microglia are extremely dynamic in the

absence of pathological challenge, continuously surveying the parenchyma with their highly motile processes.55,56 The develop-

ment of non-invasive methods was necessary for our understanding of microglial roles in the healthy brain (reviewed in Trem-

blay151). In 2005, microglial extreme dynamism in the intact brain was examined for the first time, through the skull of CX3CR1-

GFP mice in which microglia are fluorescently labeled.55,56 As a result, microglia are now considered to be the most dynamic cells

of the healthy mature brain.151 This seminal discovery prompted the renaming of quiescent or resting microglia as surveying56,152

or surveillant (from the verb to survey)153 microglia and also led to the proposal of the concept that microglia are never resting.154

Together, these and other in vivo two-photon imaging data put into serious doubt the concept of ‘‘activated’’ microglia, which sug-

gests a unique form of response, as in fact microglia are always active, constantly responding (in different ways depending on the

context) to the changes in their CNS environment, even under normal physiological conditions. Therefore, microglia do not switch

from ‘‘resting’’ to ‘‘activated’’ in response to trauma, injury, infection, disease, and other challenges. Rather, microglia are contin-

uously active and react to the stage of life, CNS region, species, sex, and context of health or disease by adopting different states

and performing different functions. Thus, although still widely used, ‘‘resting’’ and ‘‘activated’’ microglia are labels that should be

discontinued.
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their limitations. We intentionally focus on citing studies

related to the nomenclature rather than providing a compre-

hensive review of the history of microglial research, as it has

been done elsewhere.7,8 We discuss the overall limitations

and conclude with recommendations for the proper usage of

microglial nomenclature as research evolves, provide a con-

ceptual framework for discussing microglia, and offer per-

spectives on the future questions, gaps in knowledge, and

challenges to tackle as a field.

MICROGLIAL IDENTITY: WHATWEMEAN ABOUTWHEN
WE TALK ABOUT MICROGLIA

The origin and identity of microglia was, for many years, a matter

of debate. In the dim and distant past, Ramón y Cajal’s disciple,

Pı́o del Rı́o-Hortega, suggested that these cells were of meso-

dermal origin.9 However, over time, an ectodermal origin was

also proposed,10 sparking controversy until the 1980s. The

mesodermal origin took solid hold later with the advance of tech-

nical approaches revealing more similarities than differences

with the functions and features of macrophages. In 1999, micro-

glia were reported to appear in the brain rudiment as early as em-

bryonic day 8 (E8) in mice and proposed to originate from yolk

sac progenitors.11 The recent combination of fate mapping

studies and transplantation approaches this debate, revealing

key aspects of microglial identity and plasticity. In mice, unlike

other model organisms such as zebrafish,12,13 microglia are

now considered to originate from a pool of macrophages pro-

duced during primitive hematopoiesis in the yolk sac, which start
3462 Neuron 110, November 2, 2022
invading the neuroepithelium at E8.5.14–17 In humans, microglial

precursors invade the brain primordium around 4.5 to 5.5 gesta-

tional weeks.18

One key signaling pathway critical for microglial development

and maintenance is the colony stimulating factor receptor

(CSF1R). Ligands of CSF1R that sustain this pathway include

two cytokines with different origins and primary sequences but

similar tridimensional structures and binding to CSF1R: IL-34

and CSF1.19 IL-34 is produced by neurons, while CSF1 is

secreted primarily by oligodendrocytes and astrocytes. Accord-

ingly, the two ligands have distinct and non-overlapping functions

in the establishment and maintenance of microglia within the gray

and white matter.20 Microglia have the capacity for self-renewal in

certain contexts, allowing them to repopulate the CNS within

1 week of depletion, even when more than 99% of microglia are

ablated with CSF1R antagonists21,22 or diphtheria toxin.22 This

process, termed ‘‘microglial repopulation’’ or ‘‘microglial self-

renewal,’’23–25 is different from ‘‘microglia replacement,’’ which,

in contrast, occurs when endogenous microglia are replaced by

exogenous cells that can include bone-marrow-derived myeloid

cells,26–29 peripheral blood cells,28,30 stem-cell- or induced-plurip-

otent-stem-cell (iPSC)-derived peripheral blood cells,31 across

various experimental or pathological conditions.31–33 Our current

definition is that mammalian microglia are yolk-sac-derived,

long-lived cells within the CNS parenchyma that persist into adult-

hood and self-renewwithout any contribution from bone-marrow-

derived cells at a steady state.

The identification of microglia is currently based on the

expression of specific genes highly enriched in microglia, which



Box 2. M1 versus M2 microglia

Another terminology emerged in the early 2000s from immunologists classifying macrophages based on findings obtained using

in vitro models: ‘‘M1,’’ the classical activation, considered pro-inflammatory and neurotoxic, as well as closely related to the

concept of ‘‘activated’’ microglia, and ‘‘M2,’’ or alternative activation, considered anti-inflammatory and neuroprotective.155 These

responses were related to those of T helper lymphocytes (Th1 and Th2) based on their in vitro activation by specific immune stimuli

that activated differential metabolic programs and changes in cytokine expression.156 An associated term is ‘‘M0’’ microglia, which

describes their state when cultured in the presence of transforming growth factor b (TGFb) and CSF1 to mimic in vivo counter-

parts.157 The terms became widely adopted in microglial research, and the 2010s saw a boom of papers phenotyping macro-

phages and microglia into ‘‘M1’’ and ‘‘M2’’ based on the expression of markers related to these categories, used to indirectly as-

sume a detrimental (‘‘M1’’) or beneficial (‘‘M2’’) microglial role.156 In many cases, editors and reviewers have asked authors to

comply with this nomenclature. However, it soon became evident that macrophage responses are more complex than simply

‘‘M1’’ and ‘‘M2.’’158 In the case of microglia, the advent of single-cell technologies provided clear evidence that microglia in the

living brain do not polarize to either of these categories, often co-expressing M1 and M2 markers,159 despite the continued use

of M1 andM2 in the literature. We thus recommend strictly avoidingM1 andM2 labels and usingmore nuanced tools to investigate

microglial function (reviewed in Devanney et al.160).
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represent their transcriptional identity and are commonly em-

ployed as ‘‘microglial markers’’ (Table 1). However, the expres-

sion of each marker alone is not sufficient to define microglial

identity, as levels of expression may change depending on mi-

croglial adaptation to local signals. The present consensus is

that mammalian microglia can be identified by the expression

of transcription factors like Pu.116, cytoplasmic markers such

as ionized calcium-binding adapter molecule 1 (IBA1), and sur-

face markers including the purinergic receptor P2YR12, trans-

membrane protein 119 (TMEM119), and CSF1R.34 Based on

these markers, genetic tools (such as Cx3cr1CreERT2,

P2ry12CreERT2, Tmem119CreERT2, and HexbCreERT2 mouse lines)

(Table 2) are available that allow for more specific manipulation

or visualization ofmicroglia, although they could also target other

populations, including border-associated macrophages (BAMs),

also named CNS-associated macrophages (CAMs), and other

glial cells.35–40 Most recently, a new binary transgenic model

relying on co-expression of Sall1 and Cx3cr1 has been intro-

duced that specifically targets microglia in a non-induc-

ible way.41

Nonetheless, many of these markers are downregulated in

pathological states and can be expressed by other brain macro-

phage populations such as BAMs residing in the perivascular

space and leptomeninges,42,43 which also derive from the yolk

sac.44 In addition, caution must be exercised, because many

classical microglial markers can also be expressed by cells orig-

inating from monocytes or iPSCs, and therefore their presence

does not imply bona fide microglia. These cells should be

more accurately described as monocyte-derived microglia-like

or iPSC-derived microglia-like cells (iMGL cells).

As resident macrophages of the brain parenchyma, microglia

participate in many critical CNS functions ranging from glio-,

vasculo-, and neurogenesis to synaptic and myelination through

their process motility, release of soluble factors, and capacity for

phagocytosis (Figure 2). These functions have been revealed us-

ing several constitutive and inducible knockout models for mi-

croglial-specific genes45 and by microglial-depletion paradigms

in animal models,46 particularly rodents and zebrafish.

The key role of microglia in maintaining CNS health is also sup-

ported by the severe phenotype displayed by patients lacking
microglia due to loss-of-function CSF1R mutations. Heterozy-

gous mutations, particularly in the kinase domain of CSF1R,

are associated with adult-onset leukoencephalopathy with

axonal spheroids and pigmented glia (ALSP; OMIM: 221820)

characterized by reduced microglial numbers and white matter

atrophy that result in progressive cognitive and motor impair-

ment, dementia, and early death.47 Additionally, biallelic muta-

tions are reported to cause complete absence of microglia

with developmental brain malformation, hydrocephalus, bony le-

sions, and early death.48,49 This phenotype, however, seems in

apparent contradiction with the reported absence of gross

neurological abnormalities at birth observed in mice with

genomic deletion of FIRE, an intra-intronic super enhancer in

the Csf1r gene enhancer region, whose brains lack microglia,50

though more nuanced analyses are needed. Nonetheless, FIRE

mice have premature lethality and increased amyloid pathology

as early as 5 months of age.51 The source of discrepancy be-

tween the developmental impact of CSF1Rmutations in humans

andmice is not yet fully understood. One possibility is thatmicro-

glial developmental functions are partly redundant, modified by

other environmental factors, or compensated in their absence

by other cell types, such as astrocytes.52 It will be important to

determine how microglia communicate with other glial cells

and immune cell populations to support CNS maturation and

function in the future.

(RE)DEFINING MICROGLIAL STATES: DAMs, HAMs,
WAMs, AND MORE

Core markers of cellular identity are useful to identify microglia

but are not necessarily informative about the functional ‘‘state’’

of microglia, which depends on the context (i.e., the physiolog-

ical conditions in which microglia are found at any given CNS re-

gion and time). Microglia have a complex ‘‘sensome,’’53 a series

of surface receptors that allow them to detect changes in their

environment. Microglial states are thus dynamic, and the

outcome of the cell’s epigenome, transcriptome, proteome,

and metabolome yields discrete morphological, ultrastructural,

and/or functional outputs (Figure 3). Microglia are anything but

static, as they are exceptionally responsive to alterations in their
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Box 3. Microglial morphological responses across species

Microglial cells display a profusion of morphologies that have fascinated researchers since the early days of Rı́o-Hortega. Many

were tempted to equate morphology with function. Ramified microglia were traditionally associated with the ‘‘resting’’ state,

although we now know that ramified microglia actively play many functions during normal physiological conditions. In contrast,

‘‘reactive’’ microglia (rounder cell body, generally with fewer and shorter processes) were called ‘‘activated’’ and equated with

an inflammatory response. Only recently, however, a mechanistic link between microglial reduced branching and increased

release of the inflammatory cytokine interleukin 1b (IL-1b) was reported.161 Activation of P2YR12 by tissue damage signals poten-

tiates the tonically active potassium THIK-1 channel, expressed in microglia, leading to both decreased microglial ramifications

and activation of the inflammasome machinery processing IL-1b precursors into their mature form.161 Another morphology asso-

ciated with functional changes is ‘‘ameboid’’ microglia, which were thought to be more ‘‘phagocytic,’’ but it is clear now that rami-

fied microglia execute phagocytosis through their terminal or ‘‘en passant’’ branches notably during adult neurogenesis,162,163

while in disease conditions such as epilepsy, ameboid microglia can display reduced phagocytosis.164 Therefore, morphological

changes should not be interpreted in functional terms but rather taken as a suggestion prompting further investigation of the rela-

tionship between microglial structure and function. While the categorization described above is now outdated, the analysis of mi-

croglial morphology is considered valuable and still often used across animal model and human postmortem brain studies.

Studies in postmortem brain samples have revealed that human and mouse microglia can adopt similar morphologies. Using the

now outdated terms ‘‘ramified,’’ ‘‘primed’’ (larger cell body, ramified processes), ‘‘reactive’’ (ameboid, few ramified processes),

and ‘‘ameboid’’ (less than two unramified processes), microglia were described in middle-aged individuals.165 In addition, ‘‘rod-

shaped’’ microglia (elongated cell body, polarized processes) were found to become more abundant with aging.166 Similarly,

‘‘dystrophic’’ microglia, presenting apparently fragmented (but still intact at the ultrastructural level) processes were reported in

aging.167,168 These different morphological types observed in humans were previously described in rodent models (reviewed in

Savage et al.169). Nevertheless, a more sensitive quantitative microglial morphological assessment using a computational pipeline

involving cluster analysis revealed differences between mouse and human, with distinct clusters found to be unique to each spe-

cies.170 Subsequently, a high-throughput comparative morphology analysis revealed a generally conserved evolutionary pattern,

with some intriguing differences observed between the leech, zebrafish, axolotl, turtle, chicken, gecko, snake, bearded dragon,

bat, boar, sheep, whale, hamster, rat, mouse, marmoset, macaque, and human and across brain regions between mouse and hu-

man.76 While detailed comparative ultrastructural analyses of microglia between species are currently lacking, the state of ‘‘dark

microglia’’ (named based on their increased electron density giving these cells a dark appearance, compared to other microglial

states) discovered in 2016, which is defined using electron microscopy by its markers of cellular stress in contexts of aging and

disease, was found to be conserved acrossmouse, rat, and human.171,172 New strategies are currently being developed to provide

morphological data analyses based on automated pipeline, thus overcoming feature-selection-based biases.173 Future studies

will show how these varied morphologies correlate with transcriptional and proteomic profiles and what they imply for the cell’s

function. At the molecular level, recent single-cell transcriptome analyses also revealed that human microglia show multiple clus-

ters that indicate a greater heterogeneity than in other mammalian species such as the mouse.76,91
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local environment. In the mature healthy CNS, the distribution of

microglia is largely uniform and generally regular with little over-

lap between adjacent territories.54 The cell bodies are largely

sessile, but their processes are constantly moving and scanning

the brain parenchyma.55,56 Microglial functions adapt to their

location and reciprocal interactions with nearby cells and struc-

tures. Their morphology, ultrastructure, andmolecular profile are

similarly dynamic and plastic, resulting in many different cell

states. As Conrad H. Waddington, founding father of systems

biology, eloquently described: ‘‘Cells are residents of a vast

‘landscape’ of possible states, over which they travel during

development and in disease’’.57

Single-cell technologies, multi-omics, and integrative ana-

lyses of gene and protein expression have helped to not only

locate cells on this landscape but also provide new insight into

the molecular mechanisms that shape the landscape and regu-

late specific cell states in a given context (e.g., development,

adult, disease, or injury model, etc.). Many diverse and

context-dependent microglial states have been observed across

species andmodels. Some examples of these states are the dis-

ease-associated microglia (DAMs), originally associated with
3464 Neuron 110, November 2, 2022
Alzheimer’s disease (AD) pathology models;58 microglial neuro-

degenerative phenotype (MGnD) documented across several

disease models;59 activated response microglia (ARMs) and

interferon-responsive microglia (IRMs) in an AD pathology

mouse model;60 human AD microglia (HAMs);61 microglia in-

flamed in multiple sclerosis (MS) (MIMS);62 and lipid-droplet-

accumulating microglia (LDAMs) in aging mice and humans,63

brain tumors (glioma-associated microglia, GAMs),64 amyotro-

phic lateral sclerosis (ALS)-associated signature,65 and Parkin-

son disease (PD) microglial signature.66 In the developing and

aging brain, the white matter-associated microglia (WAMs),67

axon tract-associated microglia (ATMs),68 and proliferative-re-

gion-associated microglia (PAMs, related to phagocytosis of

developing oligodendrocytes)69 may share some features with

the core DAM signature. In the developing human CNS, micro-

glia also express some of the DAM/MGnD/ARM-like profiles.70

While gene expression signatures indicate biological path-

ways, the functional implications of these states and relationship

to one another remain unclear. In fact, the ever-growing list of

branding clusters in single-cell RNA sequencing (scRNA-seq)

experiments and use of acronyms is not consistent across



Figure 1. Microglial nomenclatures: Past and
future
Microglia have been traditionally framed into di-
chotomic categories, but our current integration of
epigenetic, transcriptomic, metabolomic, and pro-
teomic data favors a multidimensional integration of
coexisting states.
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research groups and could hinder future advance of the field

without validation and functional experiments to understand

their meaning. Moreover, transcriptomic signatures depend on

tissue dissection and gating strategies that can lead to isolation

artifacts,71–74 which, when layered with the technical limitations

of single-cell sequencing, can make it difficult to assign state

identity across different studies. Another source of complexity

comes from evident interspecies differences,75–77 which can

further hamper comparisons. Advances in computational tools

and approaches, which enable the alignment and integration of

single-cell datasets, can help solve some of these issues,

providing a powerful way to determine microglial-state similar-

ities across contexts.78,79

A practical limitation of solely defining functional states by their

transcriptional signature is that mRNA expression may not

directly predict protein levels.80 Protein expression signatures

obtained by methods, such as single-cell mass cytometry,

have their own technical limitations81 but may better represent

true cell states.82,83 Importantly, mRNA or protein expression

alone does not necessarily predict microglial function, although

they can be used to generate functional hypotheses that need

to be experimentally tested. There are many methods that allow

for the classification of microglia based on their constituent

states, including gene expression, protein expression, post-

translational modifications, mRNA profiling, morphology, and ul-

trastructure. All these approaches can vary in coverage (e.g.,

expression of a single-cell versus whole-transcriptome profiling),

which has created overall confusion and mislabeling in the field.

Presumably, each microglial state is associated with unique or

specialized functions, although the unique roles of any observed

state have so far remained elusive. Thus, it is critical that we

begin to definemicroglial states taking into account their specific

context within and between species, across sex, space, and

time (e.g., CNS region and biological age) as well as layers of

complexity (e.g., epigenetic, transcriptional, translational, and

metabolic signatures), which ultimately determine together the

cell’s phenome (i.e., motility, morphology, and ultrastructure)

and function (Figure 5).

One major conceptual limitation of the various ‘‘one-off’’ mi-

croglial acronyms (e.g., DAMs, MGnD, etc.) is that they suggest

stable states or phenotypes of microglia associated with a dis-

ease context, such as neurodegeneration. Intuitively, this classi-
fication system is similar to the concept of

neuronal cell types, where neurons cluster

into distinct subtypes based on their gene

expression or neuroanatomy. However,

contrary to microglia, neuronal groupings

are considered fixed and terminally differ-

entiated.5 We do not know how temporally
or spatially dynamic microglial states may be, as microglia are

remarkably heterogeneous and plastic. Therefore, these cells

are probably not permanently ‘‘locked’’ into any single functional

state. From the evidence available so far, microglial states

appear dynamic and plastic, possibly transitory, and strongly

dependent on the context.84 New tools including imaging re-

porters for microglial states are needed to track transitions within

individual cells over time and across the lifespan, following

different challenges and perturbations, as well as in response

to treatment.

MICROGLIAL HETEROGENEITY: IT ALL DEPENDS ON
THE CONTEXT

The term ‘‘homeostatic’’ is used to refer to microglia in physio-

logical conditions, but there are different interpretations of this

nomenclature when describing microglia in health and disease.

While homeostatic relates to the ‘‘physiological’’ context as-

sessed in space and time, it does not necessarily correspond

to a unique molecular profile because, even without any pertur-

bation, microglia display diverse morphological and functional

states depending on the signals from the CNS microenviron-

ment. This continuous microglial sensing results in multiple tran-

scriptional signatures from development to aging depending on

the specific local signals or challenges to the brain at each devel-

opmental stage.53 A less responsive microglial state, which in

other contexts would be considered more homeostatic, might

be less effective at responding to damage or pathological cues

in aging and disease contexts. For example, in aging and neuro-

degenerative disease, microglia may have reduced ability to

rapidly respond to brain challenges (i.e., removing toxic amyloid,

infected, damaged, or degenerating neurons), leading to CNS

dysfunction and disease progression. Microglia from adult

TREM2 knockout mice have been described as ‘‘locked in a ho-

meostatic state’’ as they are less responsive to challenges (such

as amyloid) and do not adopt a transcriptional DAM signature in

disease contexts.85,86 From this example, the term ‘‘homeostat-

ic’’ is not informative if not well defined and placed in the context

of function.

Key modifying factors that lead to microglial heterogeneous

states include age, sex, circadian time, local CNS signals, and

peripheral cues, such as the changes in the microbiota87,88 or
Neuron 110, November 2, 2022 3465



Table 1. Main antibody markers used to visualize microglia in rodents and humans from early embryonic development to adulthood and aging

Marker Specificity Labeled states Staining patterns Main applications Reference

F4/80

(EMR1)

macrophages

including

microglia

homeostatic conditions and

disease associated.

expressed in rodents but

presence not yet confirmed

in human.

does not provide a detailed cellular

visualization, especially in homeostatic

conditions, because of its low basal

expression.

its expression varies significantly

between species and is low in

human macrophages.

brightfield or fluorescence

analysis of microglial density,

distribution, and categorization

into morphological states.

Lawson et al.;175

Gautier et al.;176

Waddell et al.177

CX3CR1 macrophages

including microglia

homeostatic conditions and

disease associated, but

downregulated by the DAMs,

MGnD, dark microglia, and other

pathological states.

CX3CR1-GFP reporter line

generally used for visualization,

with or without GFP

immunostaining.

brightfield or fluorescence

analysis of microglial density,

distribution, and categorization

into morphological states.

Keren-Shaul et al.;58

Krasemann et al.;59

Jung et al.;178

Wolf et al.;179

Bisht et al.180

IBA1 macrophages

including microglia

homeostatic conditions

and disease associated.

used to study microglia in early

embryonic and postnatal

development.

conserved across several

species including human.

provides exceptional visualization of

microglial cell body and processes,

including distal extremities.

diffuses throughout the cytoplasm.

staining can, however, be

discontinuous in aging.

brightfield or fluorescence

analysis of microglial density,

distribution, and morphology.

ultrastructural studies.

Keren-Shaul et al.;58

Geirsdottir et al.;76

Tischer et al.;168

Imai et al.;181

Ito et al.;182

Shapiro et al.;183

Wake et al.;184

Tremblay et al.;185

Lier et al.186

MerTK macrophages

including microglia

homeostatic conditions and

disease associated.

expressed in health and across

various contexts of disease,

notably in association with the

phagocytosis of newborn

neurons, amyloid, and myelin.

partial visualization of microglial

cell bodies and diffuse staining

of their processes preventing a

complete morphological

visualization.

brightfield or fluorescence

analysis of microglial density,

distribution.

morphological analysis or

categorization into

morphological states

possible in combination

with IBA1.

Fourgeaud et al.;187

Savage et al.;188

Healy et al.;189

Huang et al.190

CD11b/c macrophages

including microglia

homeostatic conditions and

disease associated.

used to study microglia in early

postnatal development.

conserved across species

including human.

visualization of microglial cell

body and processes.

low basal expression in adult

microglia.

staining is mainly restricted

to the plasma membrane.

brightfield or fluorescence

analysis of microglial density,

distribution, and morphology

ultrastructural studies of

subsets downregulating IBA1.

Bisht et al.;180

Robinson et al.;191

Milligan et al.;192

McKay et al.;193

Blackbeard et al.;194

Marshall et al.195

P2RY12 largely microglia

specific (not

expressed by

monocytes),

but state

dependent

homeostatic marker.

strongly downregulated in

disease-associated and reactive

states (but upregulated in status

epilepticus).

used to study microglia in early

postnatal development.

conserved across several

species including human.

visualization of microglial cell

body and processes.

staining can localize to the

plasma membrane or diffuse

throughout the cytoplasm and

can be more profuse than IBA1

depending on staining

conditions.

brightfield or fluorescence

analysis of microglial density,

distribution, and morphology.

ultrastructural studies.

Avignone et al.;117

Peng et al.;196

Haynes et al.;197

Sipe et al.198

(Continued on next page)
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Table 1. Continued

Marker Specificity Labeled states Staining patterns Main applications Reference

TMEM119 largely microglia

specific, but state

dependent

homeostatic conditions and disease

associated, but downregulated

on reactive microglia in some

contexts (e.g., traumatic brain injury

and ischemia, MS).

developmentally regulated.

conserved across species

including human.

partial visualization of microglial

cell bodies and diffuse staining of their

processes preventing a complete

morphological visualization.

brightfield or fluorescence

analysis of microglial density,

distribution.

morphological analysis or

categorization into

morphological states possible

in combination with IBA1.

Kanamoto et al.;199

Bennett et al.;200

Satoh et al.;201

van Wageningen et al.;202

Gonzalez Ibanez203

TREM2 macrophages

including

microglia, state

dependent

microglial subsets in early postnatal

development, aging, and disease

conditions (e.g., microglia involved in

synaptic pruning or associated with

amyloid plaques in AD pathology).

shown to label monocytes or neurons

instead of microglia in human.

visualization of microglial cell

body and processes.

staining diffuses throughout the

cytoplasm.

brightfield or fluorescence

analysis of microglial density,

distribution, and categorization

into morphological states.

ultrastructural studies of

pathological states

downregulating IBA1.

Bisht et al.;180

Savage et al.;188

Satoh et al.;201

Chertoff et al.;204

Fahrenhold et al.205

Other proteins expressed by microglia but whose specificity is not confirmed include APOE, CLEC7A, ITGAX, and LPL.
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Table 2. Main mouse lines used to visualize microglia from early embryonic development to adulthood and aging

Mouse line Specificity Labeled states Expression patterns Main applications Reference

CX3CR1-GFP macrophages including

microglia

homeostatic conditions and

disease associated, but

downregulated in DAM,

MGnD, dark microglia, and

other pathological states.

visualization of microglial cell

body and processes.

fluorescence diffuses

throughout the cytoplasm.

bright enough for two-

photon in vivo imaging.

a limitation is that the

heterozygous mice used for

in vivo imaging are partially

deficient in fractalkine

signaling, with possible

outcomes on the brain and

behavior.206 The

homozygous mice are

knockout for CX3CR1 and

used to study the outcomes

of fractalkine receptor

deficiency.

two-photon in vivo imaging

or fluorescence analysis of

microglial density,

distribution, dynamics,

interactions with other

parenchymal elements, and

categorization into

morphological states.

ultrastructural studies using

staining against GFP.

Davalos et al.;55 Nimmerjahn

et al.;56 Jung et al.;178 Bisht

et al.;180 Tremblay et al.;185

Paolicelli et al.207

Iba1-EGFP macrophages including

microglia

homeostatic conditions and

disease associated.

downregulated in some

contexts (e.g., obesity and

aging) and in some

pathological states (e.g.,

DAM, dark microglia).

used to study microglia in

early embryonic and

postnatal development.

conserved across several

species including human.

visualization of microglial cell

body and processes.

fluorescence diffuses

throughout the cytoplasm.

less bright than fluorescence

in CX3CR1-GFP mice but

generally sufficient for two-

photon in vivo imaging of cell

body and proximal

processes.

these mice are not partially

deficient in IBA1 in their

heterozygous state, which is

a main advantage.

two-photon in vivo imaging

or fluorescence analysis of

microglial density,

distribution, dynamics,

interactions with other

parenchymal elements, and

categorization into

morphological states.

ultrastructural studies using

staining against GFP.

Bisht et al.;180 Wake et al.;184

Hirasawa et al.208

(Continued on next page)
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Table 2. Continued

Mouse line Specificity Labeled states Expression patterns Main applications Reference

Fms-EGFP or

CSF1R-EGFP;

CSF1R-FusionRed

Macrophages including

microglia.

CSF1R is expressed by

most microglia.

Homeostatic conditions and

disease-associated, but

considered to be

downregulated in DAM and

other pathological states.

Fluorescence is less bright

than in CX3CR1-GFP mice,

and generally sufficient for

two-photon in vivo imaging.

It also allows for

fluorescence-activated cell

sorting and fluorescence

imaging when combined

with immunostaining. These

mice are not partially

deficient in CSF1R in their

heterozygous state, which is

a main advantage.

Fluorescence-activated cell

sorting and fluorescence

analysis of microglial density,

distribution, dynamics,

interactions with other

parenchymal elements, and

categorization into

morphological states when

combined with

immunostaining.

Grabert et al.;34 Sierra

et al.;162 Sasmono et al.209

HEXB-TdTomato largely overlaps with IBA1

staining but restricted to

microglia. Does not label

CAMs and other border-

associated macrophage

populations.

expression appears stable in

homeostatic conditions and

disease-associated states.

The labeled microglia are

also depleted by CSF1R

inhibition.

visualization of microglial cell

body and processes.

fluorescence diffuses

throughout the cytoplasm.

bright enough for two-

photon in vivo imaging.

a limitation is that the

heterozygous mice used for

in vivo imaging are partially

deficient in HEXB. However,

their microglial gene

expression patterns do not

appear affected.

two-photon in vivo imaging

or fluorescence analysis of

microglial density,

distribution, dynamics,

interactions with other

parenchymal elements, and

categorization into

morphological states.

Masuda et al.38

Other proteins expressed by microglia but whose specificity is not confirmed include APOE, CLEC7A, ITGAX, and LPL.
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Figure 2. Microglial core properties and functions
Phagocytosis, surveillance, and capacity for releasing soluble factors (inner
circle) are core properties through which microglia contribute to key biological
functions (outer circle). Created with BioRender.com.
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other systemic diseases (e.g., asthma)89 in addition to the path-

ophysiological state of the CNS and overall organism (discussed

in more depth in the next section). Age, indeed, has a key influ-

ence on the microglial homeostatic state, which goes through

several distinct temporal stages (embryonic, perinatal, adult,

and aging microglia), each notably characterized by an enrich-

ment of defined regulatory factors and gene expression

profiles.68,90 After the initial establishment of microglial identity

by a network of developmentally programmed and environ-

ment-dependent transcription factors,75,90 microglia become

extremely heterogeneous in their transcriptome during early

postnatal development, as determined by scRNA-seq.68,69,91

In contrast, microglia display a more limited transcriptomic het-

erogeneity in the adult CNS, where the different microglial

scRNA-seq clusters fall into a transcriptional continuum instead

of representing distinct states.68,69,91 Relatively small transcrip-

tional differences may, however, lead to relevant functional

differences, as exemplified by the functional variations between

hippocampal and cerebellar microglia.92,93

Sex differences due to sex chromosomes and/or gonadal hor-

mones may also impact microglial states in different contexts. A

growing body of evidence shows that male and female microglia

differ in their transcriptomic, proteomic, and morphological pro-

files across brain colonization, maturation, and function in health

and disease.88,94–96 Of note, the microglial sex-specific tran-

scriptomic signatures appear to be intrinsically determined, be-

ing maintained whenmicroglia are transplanted into the brains of

mice from the other sex.96 Sexually differentiated roles of micro-

glia could critically influence a variety of biological processes, in

a time-dependent manner, and, thus, emerge as key disease

modifiers across various pathological conditions with sexual
3470 Neuron 110, November 2, 2022
dimorphism in prevalence, manifestation, and response to

treatment.97 A well-characterized example for sex-specific

divergence is the purinergic receptor P2X4R, identified as the

male-biased microglial mediator of chronic pain.98 Sex differ-

ences in sexually dimorphic responses in physiology and pathol-

ogy likely arise from a combination of Y-chromosome-specific

genes, sex hormones, neuronal circuit-related factors, and

epigenetic mechanisms.99

Regardless of the reduced heterogeneity in the mature adult

(compared to embryonic) CNS,7,68,90 microglia do differ among

CNS areas in terms of their morphology and ultrastructure, tran-

scriptional, proteomic, epigenetic profiles, and functional

specialization, suggesting that microglial states are modulated

by local cues.83,100,101 However, local CNS signals are not suffi-

cient to determine microglial identity because macrophages

engrafted in the brain parenchyma can acquire a microglia-like

morphology without reaching a transcriptomic signature iden-

tical to host microglia, even after prolonged CNS resi-

dence,26,102,103 supporting the idea that microglia are distinct

from peripherally derived macrophages, even when they colo-

nize a similar niche. In addition, these findings suggest that

once their identity is established, microglia assume different

functional states in response to local CNS signals. Therefore,

both the developmental genetic programs andCNS environment

(nature and nurture) collaborate to dynamically determine micro-

glial functional states.

Microglia not only respond to local cues within the brain, but

they also receive continuous inputs from the periphery, including

signals from the gastrointestinal tract.104 In this context, the role

of the host microbiota is gaining momentum in controlling micro-

glial maturation and function in the CNS,88 with growing evi-

dence that microbiota-derived short-chain fatty acids represent

major mediators of the gut-brain axis.87,105 Another example of

crosstalk between microglia and the periphery is the so called

‘‘sickness behavior,’’ as a result of the central response to

peripherally released cytokines produced by peripheral immune

cells and tissue-resident macrophages detecting specific path-

ogen-associated molecular patterns (PAMPs).106 This complex

and coordinated response, in which the functional role of micro-

glia remains poorly understood, gives rise to adaptive behavioral

strategies, including lethargy. Acute systemic inflammation,

nevertheless, was extensively shown to impact on micro-

glia107,108 and induce a microglial state associated with robust

IL-1b production.109

The concept of the brain as an immune-privileged organ has

been challenged and definitely revisited in recent years. Indeed,

peripherally produced cytokines and immune cells access the

CNSandpatrol theperivascularspace indiseasebutalso inhealth,

thus playing important roles in coordinating central and peripheral

immune responses.110 Itwasalsosuggested thatmicroglia require

resident CD4+ T cells in the healthy developing brain for proper

maturation and complete fetal-to-adult transition.111 Microglia

and T cell crosstalk was shown to help maintain homeostasis in

the CNS, with dysfunctional regulation occurring in diseases,

suchasMS,112 ALS,113 AD,114 andencephalitis.115 Itwill be impor-

tant to continue investigating the influence of the peripheral im-

mune system, including B cells, natural killer cells, and other cells,

on microglial states and function in both health and disease.

https://BioRender.com


Figure 3. Microglial identity and states
The identity of microglia, compared to other CNS-
associated macrophages in the perivascular space,
choroid plexus, and leptomeninges, is established
early on from yolk-sac-derived progenitors. Once
they colonize the brain parenchyma and differen-
tiate, they can adopt multiple states depending
on the particular spatiotemporal context, as
shown in more detail in Figure 5. Created with
BioRender.com.
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MICROGLIAL STATES IN THE DISEASED CNS

Microglia are keen responders and critical players in numerous

neurodevelopmental, neurological, and neurodegenerative con-

ditions, as thoroughly reviewed elsewhere. Altered microglial

states have been described in the diseased human brain and

across various animal models of disease pathology based on

morphology and gene expression signature. In addition, these

states also differ depending on the timing (i.e., disease stage),

genetic background, and local environment. Context-dependent

signals vary dramatically during disease progression; they range

from apoptotic cells, extracellular debris, toxic proteins (i.e., am-

yloid, a-synuclein), and signals resulting from blood-brain barrier

disruption and altered function of neurons and other glial cells.

Microglia respond to these challenges by changing their molec-

ular profile, morphology, and ultrastructure (Box 3), as well as

motility and function.

The expression of core microglial markers is also altered

over the course of disease, including downregulation of the

homeostatic microglial signature. A prototypical example is

P2RY12, one of the most widely used markers to discriminate

microglia from other macrophages, with its reduced expres-

sion being one of the salient features of the microglial response

to AD pathology and other disease conditions,116 as shown in

several mouse models of disease (Figure 4). The apparent

contradiction that core markers do not have a steady expres-

sion, as could perhaps be expected, is likely reflecting the

functions those proteins have and how they change in the

diseased brain. For instance, P2RY12 upregulation in epilepsy

may relate to microglial sensing ATP and nucleotides released

during seizures.117 This seeming paradox strengthens the fact

that determining microglial expression profile is far from attrib-

uting any function to microglia, as it may only be suggestive

of a potential functional identity, which, with unanimous

consensus from all the authors, requires experimental valida-

tion using appropriate animal models and mutagenesis while
using analyses that preserve the environ-

mental influences shaping microglial

function.

A microglial state that has received

particular focus is the one denoted by the

DAM signature, initially identified in a

mouse model with mutations within five

AD genes (5XFAD)58 and later detected in

other AD mouse models and samples

from human AD (reviewed in Chen and Co-

lonna116) and MS patients.62,118 Single-cell
transcriptomic profiling of human microglial nuclei revealed a

tau-associated microglia cluster that had not been identified in

mice,119 reinforcing the idea that more human studies are

needed. The shared DAM signature includes downregulation of

CX3CR1 and P2RY12 and upregulation of APOE, AXL, SPP1,

and TREM2,116 and it has been recently shown that it comprises

two ontogenetically different cell lineages, both expressing

TREM2, resident microglia and invading monocyte-derived cells

(termed disease inflammatory macrophages, DIMs) that accu-

mulate during aging.120 Many questions remain open regarding

the functional significance of the DAM signature.

Are DAMs beneficial, detrimental, or both? Several studies,

in both mouse and human stem-cell-differentiated microglia,

demonstrated that the transition to a DAM state is dependent

on TREM2.58,59,85,121 How the TREM2 receptor drives the

DAM transcriptional phenotype remains unclear, although

the TREM2-ApoE signaling pathway is necessary for the

switch from homeostatic to MGnD.59 Further investigations

are required to fully elucidate the role of TREM2. For instance,

is TREM2 a key sensor for amyloid-b and other AD-related pa-

thology, or does its loss of function cause developmental de-

fects in microglia that render them unable to change state? Is

TREM2 controlling the microglial state by regulating their en-

ergetic and anabolic metabolism?122,123

New bulk and single-cell epigenetic approaches75,124–129 will

help answer these questions and ultimately may provide a

means to toggle microglial states at will, enabling the field to

finally understand the function of distinct microglial states and

their impact in different contexts. Additionally, many genes of

the DAM signature were identified across various contexts. For

example, a common set of markers including (but not limited

to) an upregulation of TREM2, APOE, CD11c, CLEC7A, and

LPL and downregulation of TGFb, CSF1R, P2RY12, and

TMEM119 has been recently used to denote a microglial state

that associates with myelinating areas in the developing

brain but also with aging and several models of degenerative
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Figure 4. Microglial transcriptomic signatures
Recent scRNA-seq studies have identified many microglial transcriptional signatures including, but not limited to, PAM and ATM in development; DAM, MgnD,
ARM, and MIMS in disease models of AD, MS, ALS, and PD; and WAM, LDAM, and HAM in aging, in both mice and human. The key upregulated (red) and
downregulated (blue) genes in each signature are indicated. Created with BioRender.com.
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diseases, such as AD, ALS,130 and MS.58,67,131 These observa-

tions raise the question as to whether the DAM is a signature

strictly associated with certain diseases, as the name implies,

or perhaps represents a more universal core signature that ap-

pears in response to various challenges and may differ

between the young/developing versus aged/diseased

CNS and across distinct regions. Most likely, the same

states that are beneficial in certain contexts may be detrimental

in others, strictly depending on the complex interactions be-

tween microglia and their surrounding environment. One of the

most relevant questions to be addressed is to which extent mi-

croglial states identified in the mouse brain are conserved and

functionally relevant in the human brain.

NOMENCLATURE TROUBLES

Our current understanding of the plasticity of microglial states is

at odds with the simplistic scenario established using outdated

microglial nomenclature (resting versus activated andM1 versus

M2; Boxes 1 and 2). Thus, a systematic, careful naming
3472 Neuron 110, November 2, 2022
approach would greatly benefit microglial biology. As a first

step to guide the field regarding the use of nomenclature, we

generated a questionnaire (Data S1) and collected the responses

from the co-authors.

Surprisingly, there was more consensus than disagreement

that the current nomenclature has severe limitations, and a

more useful conceptual framework is needed to properly under-

stand microglial states. There is also agreement that this frame-

work is a first important step to guide the field and should be re-

visited every 5 to 10 years by an international panel of experts as

new discoveries are made. There is also a broad agreement that

microglial responses should be framed in a multidimensional

space and should not be simplified as dichotomic good versus

bad (Figure 1). Another point of strong agreement: abandon

M1/M2 (and similar) nomenclature once and for all and generally

avoid using the vague term ‘‘neuroinflammation.’’ Most agree

that inflammation is not always detrimental but, instead, repre-

sents an adaptive response to damage that can sometimes get

out of control (Box 4). Quite importantly, a vast majority of au-

thors support the use of ‘‘markers’’ (genes or proteins) to identify

https://BioRender.com


Figure 5. Microglial states defined by their intrinsic and extrinsic determinants, spatiotemporal context, and layers of complexity
Microglial states depend on intrinsic determinants (such as species, ontogeny, sex, or genetic background) as well as the specific context they inhabit, including
age, spatial location, and environmental factors (such as nutrition, microbiota, pathogens, drugs, etc.). All together, these factors impinge onmicroglia at multiple
levels (i.e., epigenomic, transcriptomic, proteomic, metabolomics, ultrastructural, and phenomic), which ultimately determine microglial functions. Created with
https://BioRender.com.
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cell populations, but not as a readout of cell functions, which

need to be addressed directly.

Nonetheless, there were a few points that are still under

intense debate. The term ‘‘resting’’ microglia is strongly avoided

by some authors, whereas others acknowledge that they still use

it even with its limitations for lack of a better term. ‘‘Homeostatic’’

has more acceptance, although it is recognized that it is based

on a very particular gene signature not shared by microglia

across all physiological contexts, such as embryonic and post-

natal development, and that several homeostatic states likely

exist. Thus, the term ‘‘homeostatic’’ should always be accompa-

nied by an accurate description of the context.

The opinion on use of the term ‘‘DAM,’’ on the other hand, is

highly polarized. Many authors consider that a core set of tran-

scripts in this signature is common to several pathological con-

ditions and some physiological processes, including the devel-

opment of white matter, whereas an equal number of authors

state there is not enough evidence for ‘‘DAM’’ to be a universal

signature of microglial response to damage. Finally, the extent

to whichmicroglia are unique or similar to other brain-associated

or tissue macrophages is evolving with new data and profiling

methods: most agree that because of their lineage, microglia

are, to some extent, similar to other macrophages but have

unique functions resulting from their longer residence in the

CNS environment.
RECOMMENDATIONS: DO’S AND DON’TS

Based on the collective opinions from the authors, we provide a

series of recommendations for researchers, reviewers, and edi-
tors. As the field has not yet reached a consensus on several

nomenclature topics, including the appropriate use of descrip-

tors for microglial states, it is premature to provide clearer rec-

ommendations. Nevertheless, we aim to raise awareness on

these issues and stimulate the launch of further initiatives that

will guide the field and allow to develop more specific guidelines.
Classic nomenclature

d Consider microglia as highly dynamic and plastic cells that

display multivariate morphological/ultrastructural, tran-

scriptional, metabolic, and functional states in both the

healthy and pathological CNS.

d Describe microglia using as many layers of complexity as

possible: ontogeny, morphology/ultrastructure, motility,

-omics, and function, always placing them into a species

and spatiotemporal context (Figure 5).

d Refer to microglia in basal conditions as ‘‘homeostatic’’

instead of ‘‘resting’’ microglia, considering the limitations

discussed above (i.e., that these terms refer to microglia

under physiological conditions and not to the function of

microglia). Use the term ‘‘surveillant/surveilling’’ to refer

to microglia that are engaged in surveillance, but not as a

synonym of microglia under normal physiological con-

ditions.

d Refer to microglia in your experimental condition as ‘‘reac-

tive to’’ or ‘‘responding to’’ while describing the particular

signals they respond to (i.e., the context) instead of using

the widely used broad term ‘‘activated,’’ as microglia are

active in both health and disease.
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Box 4. Microglia and the term ‘‘neuroinflammation’’

There is a long historical literature stating that inflammation is an important part of recovery from infection, injury, and disease, and

it is the lack of resolution of this inflammatory response that is problematic in the context of CNS cell ‘‘reactivity.’’ Therefore, when

the term ‘‘neuroinflammation’’ is encountered in the literature, the readermust be aware that it means different things depending on

the context.

While the term ‘‘neuroinflammation’’ is widely used in the field as a synonym of microglial ‘‘activation,’’174 its definition also varies

dramatically among authors, according to our survey. Below are representative definitions which are currently used by the authors:

a. Neuroinflammation is inflammation of neural tissue particularly mediated by glial cells.

b. Neuroinflammation is strictly limited to conditions in which leukocytes enter CNS, e.g., in stroke and MS.

c. Neuroinflammation is a mixed cellular response to brain infection or damage involving innate and adaptive responses of resi-

dent brain cells and circulating immune cells.

d. The term neuroinflammation is too unclear and imprecise and should be avoided.

Considering that different definitions are used across authors, our main recommendation for the field is to liberate neuroinflamma-

tion from microglia and microglia from neuroinflammation and to use both terms rigorously. The consensus among authors is

4-fold. First, protection against tissue damage and extreme departures from homeostasis as well as repair (i.e., ‘‘inflammation’’)

encompasses, in the CNS, a highly complex set of local responses and equally complex interactions with circulating immune cells

or with immune cells residing in brain-blood and brain-cerebrospinal fluid interphases. In other words, ‘‘neuroinflammation’’ is not a

substitute for ‘‘microglial reaction.’’ Second, there are numerous transcriptional states of microglia, astrocytes, and oligodendro-

cytes. The functional outcomes of cells undergoing these transcriptional states remain incompletely understood. Furthermore, it is

uncertain which transcriptional states are transient or represent durable cell-fate choices. It is also unknown whether changes in

states during diseases are ‘‘inflammatory’’ or dedicated to maintaining microglial homeostatic functions. Taking these consider-

ations together, one should exercise extreme caution in simplifying these phenomena as ‘‘neuroinflammation,’’ as at least some of

these phenomena may represent alternative homeostatic or non-inflammatory reactive states. Third, it is not appropriate to imply

that neuroinflammation is invariably deleterious. Rather, it should be recognized that each inflammatory responsemay exert adap-

tive or maladaptive effects, contingent on context. To be more specific, research is necessary to explore functions and distinct

actions of cytokine-enriched microglia secretomes beyond binary characterizations such as ‘‘pro-inflammatory’’ and ‘‘anti-inflam-

matory.’’ Fourth, with regards to nomenclature, we recommend the use of modest and precise terms to describe specific phenom-

ena such as:microglial reaction, astrocytic reaction,molecules involved, loss of barrier function at the blood-brain barrier, etc. All in

all, the main message we wish to convey is that inflammation associated with the CNS follows unique rules that need to be fully

discerned experimentally and not simply extrapolated from observations in non-nervous tissue.
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d Disregard simplistic, dichotomic categorizations by

providing the observed data and its context.

d Describe profiles of cytokine expression, considering that

microglial complexity cannot be reduced to oversimplified

and polarized ‘‘pro-inflammatory’’ versus ‘‘anti-inflamma-

tory’’ categories. Similarly, do not use M1 versus M2 clas-

sification.

d When using the term ‘‘DAM,’’ do not use it as a universal

term applicable to all diseases, models, or challenges.

The jury is still out to test whether its full or core signature

is common to all or a subset of pathologies, particularly in

the human brain.
Introducing new terminology

d Until a consensus is reached about true subtype(s) of

microglia, with defined ontogeny, physical niches, func-

tions, and transcriptional profiles (whether permanent or

transient), use the term ‘‘state’’ rather than ‘‘subpopu-

lation.’’

d Use combinations of gene or protein ‘‘markers’’ to identify

putative subpopulations but be aware that their expression

is plastic and may change over time and under different

experimental conditions. Use fate mapping approaches

with lineage tracing to track individual microglial cells
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and assess possible intrinsic differences as well as

changes in their state over time.84,132

d In scRNA-seq studies, describe the transcriptional signa-

tures (sets or modules of expressed genes) that can be

compared with other studies.116,133 To describe groups

of transcriptionally similar cells in terms of signature, use

the term ‘‘cluster.’’

d Avoid the use of acronymswherever possible, and only use

these once multiple laboratories have defined a stable

state with a clearly defined functional role.

d If new terminology needs to be introduced, followFAIRprin-

ciples: findable, accessible, interoperable, and reusable

(https://neuronline.sfn.org/professional-development/

data-sharing-principles-to-promote-open-science). An

example of naming cell lines following these principles

can be found here.134
Microglial markers and function

d Use integrative methodological approaches that allow

probing of microglia using different levels of analysis

(Figure 5).

d Follow updated consensus guidelines when usingmethod-

ologies such as scRNA-seq,135 qRT-PCR,136 or digital

PCR.137

https://neuronline.sfn.org/professional-development/data-sharing-principles-to-promote-open-science
https://neuronline.sfn.org/professional-development/data-sharing-principles-to-promote-open-science
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d Do not use morphology or gene/protein expression as a

substitute for directly assessing cell function. Morphology

and expression can be used to generate hypotheses about

function that need to be specifically tested.
Grammar quandary

d ‘‘Microglia’’ as a population is a plural noun in English but a

singular noun in Latin-derived languages, which occasion-

ally causes confusion. In English texts, microglial cells

should always be referred to in the plural form unless refer-

ring to an individual cell. For example, ‘‘microglia are brain

cells’’ but ‘‘this microglia is adjacent to a neuron’’.
FUTURE QUESTIONS AND CHALLENGES

From words to action
A key challenge in the field is to match microglial morphological,

ultrastructural, transcriptomic, proteomic, metabolomics, and

emerging lipidomic changeswith functional responses (Figure 3).

In the current single-cell era, an overwhelming wealth of data has

been generated, profiling the expression of millions of microglia

in different organisms, at different ages, across diverse brain re-

gions. Yet, such ‘‘omics’’ identities are not necessarily linked to

functional states and often lack spatial resolution. Additionally,

manywidely usedmicroglial markers are sensome genes, whose

expression and activity at the microglial membrane may reflect

functional adaptations to a changing environment and are

possibly more indicative of the microglial functional state than

the transcription profile.

Transcriptional analysis will benefit from ribosome profiling by

RiboSeq138 and from gene-trap insertion profiling by TRAP-

Seq.139 Proteomic approaches combined with in situ studies

will provide better information in this respect, bridging the gap

between expression and function. Further integration of comple-

mentary approaches, such as spatial transcriptomics, imaging

mass cytometry, and correlative or conjugate electron micro-

scopy in combination with other single-cell approaches, will pro-

vide a more comprehensive characterization of microglia. Ulti-

mately, functional studies using specific pharmacological and

transgenic approaches in animal models, as well as human-

derived cells and organoids, are indispensable to understand

the multiple roles of microglia within specific spatiotemporal

contexts of health and disease.

How are microglial states coordinated?
Even as we acquire more data about microglial states, there are

still key questions remaining unanswered. To which extent are

microglial states plastic and reversible? What is the relationship

between microglial state and cellular function? These varied sin-

gle-cell characterizations ultimately need to be linked to partic-

ular functions to become relevant to development, health, and

diseases. How do these states come about? How do signals

from the CNS environment get integrated inmicroglia to produce

specific states? New imaging tools and reporters that enable

tracking and manipulation of specific microglial states are

needed to address these questions.
How similar are peripherally derived macrophages and
microglia?
A burning question that surely requires further investigation is

related to the identity and function ofmicroglia versus other brain

macrophages. Although recent studies have provided evidence

for an intrinsic unique core signature of microglia, their functional

resemblances and differences remain undetermined. For

instance, could engrafted parenchymal macrophages function-

ally replace the resident microglia despite having a different mo-

lecular identity, and could they serve as therapeutic vectors?

The devil is in the details
Another major caveat is that microglia are incredibly reactive

cells, and evidence indicates that artifacts are often introduced

during sample processing for a variety of methodologies, such

as RNA profiling, immunohistochemistry, fluorescence-acti-

vated cell sorting, in vivo imaging, and so on. Hence, we may

be missing or confounding important pieces of information

because we unintentionally introduce changes in the parameters

we are trying to measure. In addition, these artifacts are likely to

generate variability across laboratories using different protocols.

A future challenge is to increase reproducibility of data across

laboratories by coordinating a shared database of protocols

and analysis pipelines curated using STAR Methods guidelines.

In addition, in the current single-cell multi-omics era, the chal-

lenges in big data analysis are exponentially growing.140 Statis-

tical methods (including multivariate statistics)141 and artificial-

intelligence-based data mining approaches (such as machine

learning)142 will have to be introduced to uniformly process and

integrate large datasets, as well as extract the biological rele-

vance of the findings.

Diversity as a source of richness
Many transcriptional states have been reported during embry-

onic development, aging, and disease. How many different mi-

croglial states can be identified? Within the homeostatic micro-

glia, how many states exist? How do microglia navigate among

their many states? Are they related through a transcriptional con-

tinuum or perhaps as a hub-and-spoke set of states, as has been

proposed for macrophages?4 How dynamic are these states?

And how spatially defined are they? Future research will need

to address these important questions.

Male versus female microglia
Sex differences have been reported to affect the brain coloniza-

tion, maturation, structure, transcriptomic, proteomic, and func-

tional profiles of microglia in a time-dependent manner. To what

extent these differencesmay regulate the susceptibility to neuro-

logical diseases remains a fascinating question that urgently

awaits answers. Investigating the molecular and cellular mecha-

nisms underlying sex-mediated differences in microglial states

would advance our understanding of microglial implication in

diseases with clear sex-related differences in their prevalence,

symptoms, and progression, as well as response to treatments.

Relevance to humans
It will be imperative to study developmental and functional differ-

ences between human and animal model microglia. To date,
Neuron 110, November 2, 2022 3475



ll
Perspective
most of the studies on microglia were conducted in mice, and a

direct comparison among brain regions is still missing. Whether

microglial states identified in mice also exist in humans is still un-

der debate. Translating and validating these findings across spe-

cies is critical and will help prevent failure of clinical trials that

stem from animal model limitations. In addition, most human mi-

croglial studies were performed in Caucasians, and only recently

data from other groups, such as African American individuals,

are becoming available.143

Toward a unified nomenclature
The conclusion of this paper is that the community has not yet

reached an agreement on what defines microglial identity

compared to other cell types, nor consensus on the number, dy-

namic nature, or definition of microglial states. The community

advocates for creating harmonized, curated databases and

guidelines for introducing novel terminology; following STAR

methods; and sharing data as early as possible. Until such

consensus is reached, the community urges all microglial

studies to present data with all their layers of complexity and

carefully define the context examined to offer clarity instead of

confusion, thereby contributing to a more thorough understand-

ing of the many facets of microglial biology. To establish new

guidelines for microglial states and nomenclature, we call for a

community-based approach, whereby the issues and progress

are discussed openly in workshops and meetings, with input

from diverse researchers across fields and career stages. A use-

ful model to look after are the 10 Human Leukocyte Differentia-

tion Antigen workshops that have taken place since 1982, in

charge of renaming cluster of differentiation (CD) antigens

(https://www.sinobiological.com/research/cd-antigens/hlda1).

We lastly advocate for the creation of an international panel/

committee of experts in charge of overseeing the guidelines

and establishing a specific roadmap to write a white paper in

the nearest future.

We would like to conclude with the words of Rı́o-Hortega, who

sarcastically identified the problems of microglial nomenclature

already 100 years ago: ‘‘If we were fond of introducing new

nomenclature to describe microglia, as many modern histolo-

gists are, who think that enriching nomenclature resolves prob-

lems, we would find for microglia names that would indicate their

origin, or morphology, or function, in addition to classify all the

shapes that acquire when moving and evolving—resulting in

the same absurdity that occurs in some branches of Histology

and, particularly, Hematology.’’144

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.
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